
IPFW (8) BSD System Manager’s Manual IPFW(8)

NAME
ipfw — IP firewall and traffic shaper control program

SYNOPSIS
ipfw [−cq] add rule
ipfw [−acdefnNStT] { list | show} [rule | first-last ...]
ipfw [−f | −q] flush
ipfw [−q] { delete | zero | resetlog } [set] [number ...]
ipfw enable { firewall | one_pass | debug | verbose | dyn_keepalive }
ipfw disable { firewall | one_pass | debug | verbose | dyn_keepalive }

ipfw set [disable number ...] [enable number ...]
ipfw set move [rule] number to number
ipfw set swap number number
ipfw set show

ipfw { pipe | queue } number config config-options
ipfw [−s [field]] { pipe | queue } { delete | list | show} [number ...]

ipfw [−cnNqS] [−p preproc [preproc-flags]] pathname

DESCRIPTION
The ipfw utility is the user interface for controlling theipfw (4) firewall and thedummynet (4) traffic
shaper inFreeBSD.

NOTE:this manual page documents the newer version ofipfw introduced inFreeBSDCURRENT in
July 2002, also known asipfw2 . ipfw2 is a superset of the old firewall, ipfw1 . The differences
between the two are listed in SectionIPFW2 ENHANCEMENTS , which you are encouraged to read
to revise older rulesets and possibly write them more efficiently. See SectionUSING IPFW2 IN
FreeBSD-STABLE for instructions on how to run ipfw2 on FreeBSDSTABLE.

An ipfw configuration, orruleset, is made of a list ofrulesnumbered from 1 to 65535.Packets are passed
to ipfw from a number of different places in the protocol stack (depending on the source and destination of
the packet, it is possible thatipfw is invoked multiple times on the same packet). Thepacket passed to the
firewall is compared against each of the rules in the firewall ruleset. When a match is found, the action cor-
responding to the matching rule is performed.

Depending on the action and certain system settings, packets can be reinjected into the firewall at some rule
after the matching one for further processing.

An ipfw ruleset always includes adefaultrule (numbered 65535) which cannot be modified or deleted, and
matches all packets. Theaction associated with thedefaultrule can be eitherdeny or allow depending on
how the kernel is configured.

If the ruleset includes one or more rules with thekeep-state or limit option, thenipfw assumes a
statefulbehaviour, i.e. upon a match it will create dynamic rules matching the exact parameters (addresses
and ports) of the matching packet.

These dynamic rules, which have a limited lifetime, are checked at the first occurrence of acheck-state ,
keep-state or limit rule, and are typically used to open the firewall on-demand to legitimate traffic
only. See theSTATEFUL FIREWALL and EXAMPLES Sections below for more information on the
stateful behaviour ofipfw .

All rules (including dynamic ones) have a few associated counters: a packet count, a byte count, a log count
and a timestamp indicating the time of the last match. Counters can be displayed or reset withipfw com-
mands.

Darwin August13, 2002 1

IPFW (8) BSD System Manager’s Manual IPFW(8)

Rules can be added with theadd command; deleted individually or in groups with thedelete command,
and globally (except those in set 31) with theflush command; displayed, optionally with the content of the
counters, using theshow and list commands. Finally, counters can be reset with thezero and
resetlog commands.

Also, each rule belongs to one of 32 differentsets, and there areipfw commands to atomically manipulate
sets, such as enable, disable, swap sets, move all rules in a set to another one, delete all rules in a set. These
can be useful to install temporary configurations, or to test them.See SectionSETS OF RULES for more
information onsets.

The following options are available:

−a While listing, show counter values. Theshow command just implies this option.

−c When entering or showing rules, print them in compact form, i.e. without the optional "ip from any
to any" string when this does not carry any additional information.

−d While listing, show dynamic rules in addition to static ones.

−e While listing, if the−d option was specified, also show expired dynamic rules.

−f Don’t ask for confirmation for commands that can cause problems if misused, i.e.flush . If there
is no tty associated with the process, this is implied.

−n Only check syntax of the command strings, without actually passing them to the kernel.

−N Try to resolve addresses and service names in output.

−q While add ing, zero ing, resetlog ging or flush ing, be quiet about actions (implies−f).
This is useful for adjusting rules by executing multiple ipfw commands in a script (e.g.,
sh /etc/rc.firewall), or by processing a file of many ipfw rules across a remote login
session. Ifa flush is performed in normal (verbose) mode (with the default kernel configura-
tion), it prints a message. Because all rules are flushed, the message might not be delivered to the
login session, causing the remote login session to be closed and the remainder of the ruleset to not
be processed. Access to the console would then be required to recover.

−S While listing rules, show the seteach rule belongs to.If this flag is not specified, disabled rules
will not be listed.

−s [field]
While listing pipes, sort according to one of the four counters (total or current packets or bytes).

−t While listing, show last match timestamp (converted with ctime()).

−T While listing, show last match timestamp (as seconds from the epoch). This form can be more
convenient for postprocessing by scripts.

To ease configuration, rules can be put into a file which is processed usingipfw as shown in the last synop-
sis line. An absolutepathname must be used. The file will be read line by line and applied as arguments
to theipfw utility.

Optionally, a preprocessor can be specified using−p preproc wherepathname is to be piped through.
Useful preprocessors includecpp (1) andm4(1). If preproc doesn’t start with a slash(‘ / ’) as its first
character, the usualPATHname search is performed. Care should be taken with this in environments where
not all file systems are mounted (yet) by the timeipfw is being run (e.g. when they are mounted over NFS).
Once −p has been specified, any additional arguments as passed on to the preprocessor for interpretation.
This allows for flexible configuration files (like conditionalizing them on the local hostname) and the use of
macros to centralize frequently required arguments like IP addresses.

Darwin August13, 2002 2

IPFW (8) BSD System Manager’s Manual IPFW(8)

The ipfw pipe andqueue commands are used to configure the traffic shaper, as shown in theTRAFFIC
SHAPER (DUMMYNET) CONFIGURATION Section below.

If the world and the kernel get out of sync theipfw ABI may break, preventing you from being able to add
any rules. Thiscan adversely effect the booting process.You can useipfw disable firewall to tem-
porarily disable the firewall to regain access to the network, allowing you to fix the problem.

PA CKET FLO W
A packet is checked against the active ruleset in multiple places in the protocol stack, under control of sev-
eral sysctl variables. Theseplaces and variables are shown below, and it is important to have this picture in
mind in order to design a correct ruleset.

ˆ t o upper layers V
| |
+----------->-----------+
ˆ V

[ip_input] [ip_output] net.inet.ip.fw.enable=1
| |
ˆ V

[ether_demux] [ether_output_frame] net.link.ether.ipfw=1
| |
+-->--[bdg_forward]-->--+ net.link.ether.bridge_ipfw=1
ˆ V
| t o devices |

As can be noted from the above picture, the number of times the same packet goes through the firewall can
vary between 0 and 4 depending on packet source and destination, and system configuration.

Note that as packets flow through the stack, headers can be stripped or added to it, and so they may or may
not be available for inspection. E.g., incoming packets will include the MAC header whenipfw is invoked
from ether_demux() , but the same packets will have the MAC header stripped off whenipfw is invoked
from ip_input() .

Also note that each packet is always checked against the complete ruleset, irrespective of the place where the
check occurs, or the source of the packet. If a rule contains some match patterns or actions which are not
valid for the place of invocation (e.g. trying to match a MAC header withinip_input()), the match pat-
tern will not match, but anot operator in front of such patternswill cause the pattern toalwaysmatch on
those packets. It is thus the responsibility of the programmer, if necessary, to write a suitable ruleset to dif-
ferentiate among the possible places.skipto rules can be useful here, as an example:

packets from ether_demux or bdg_forward
ipfw add 10 skipto 1000 all from any to any layer2 in
packets from ip_input
ipfw add 10 skipto 2000 all from any to any not layer2 in
packets from ip_output
ipfw add 10 skipto 3000 all from any to any not layer2 out
packets from ether_output_frame
ipfw add 10 skipto 4000 all from any to any layer2 out

(yes, at the moment there is no way to differentiate between ether_demux and bdg_forward).

SYNTAX
In general, each keyword or argument must be provided as a separate command line argument, with no lead-
ing or trailing spaces. Keywords are case-sensitive, whereas arguments may or may not be case-sensitive
depending on their nature (e.g. uid’s are, hostnames are not).

Darwin August13, 2002 3

IPFW (8) BSD System Manager’s Manual IPFW(8)

In ipfw2 you can introduce spaces after commas ’,’ to make the line more readable. You can also put the
entire command (including flags) into a single argument. E.g.the following forms are equivalent:

ipfw -q add deny src-ip 10.0.0.0/24,127.0.0.1/8
ipfw -q add deny src-ip 10.0.0.0/24, 127.0.0.1/8
ipfw "-q add deny src-ip 10.0.0.0/24, 127.0.0.1/8"

RULE FORMA T
The format ofipfw rules is the following:

[rule_number] [set set_number] [prob match_probability]
action [log [logamount number]] body

where the body of the rule specifies which information is used for filtering packets, among the following:

Layer-2 header fields When available
IPv4 Protocol TCP, UDP, ICMP, etc.
Source and dest. addresses and ports
Direction See SectionPA CKET FLOW
Transmit and receive interface By name or address
Misc. IP header fields Version, type of service, datagram length, identi-

fication, fragment flag (non-zero IP offset), Time
To Liv e

IP options
Misc. TCP header fields TCP flags (SYN, FIN, ACK, RST, etc.),

sequence number, acknowledgment number, win-
dow

TCP options
ICMP types for ICMP packets
User/group ID When the packet can be associated with a local

socket.

Note that some of the above information, e.g. source MAC or IP addresses and TCP/UDP ports, could easily
be spoofed, so filtering on those fields alone might not guarantee the desired results.

rule_number
Each rule is associated with arule_number in the range 1..65535, with the latter reserved for
thedefaultrule. Rulesare checked sequentially by rule number. Multiple rules can have the same
number, in which case they are checked (and listed) according to the order in which they hav ebeen
added. Ifa rule is entered without specifying a number, the kernel will assign one in such a way
that the rule becomes the last one before thedefaultrule. Automaticrule numbers are assigned by
incrementing the last non-default rule number by the value of the sysctl variable
net.inet.ip.fw.autoinc_step which defaults to 100.If this is not possible (e.g. because
we would go beyond the maximum allowed rule number), the number of the last non-default value
is used instead.

set set_number
Each rule is associated with aset_number in the range 0..31.Sets can be individually disabled
and enabled, so this parameter is of fundamental importance for atomic ruleset manipulation.It
can be also used to simplify deletion of groups of rules.If a rule is entered without specifying a
set number, set 0 will be used.
Set 31 is special in that it cannot be disabled, and rules in set 31 are not deleted by theipfw
flush command (but you can delete them with theipfw delete set 31 command). Set31
is also used for thedefaultrule.

Darwin August13, 2002 4

IPFW (8) BSD System Manager’s Manual IPFW(8)

prob match_probability
A match is only declared with the specified probability (floating point number between 0 and 1).
This can be useful for a number of applications such as random packet drop or (in conjunction
with dummynet (4)) to simulate the effect of multiple paths leading to out-of-order packet deliv-
ery.

Note: this condition is checked before any other condition, including ones such as keep-state or
check-state which might have side effects.

log [logamount number]
When a packet matches a rule with thelog keyword, a message will be logged tosyslogd (8)
with a LOG_SECURITY facility. The logging only occurs if the sysctl variable
net.inet.ip.fw.verboseis set to 1 (which is the default when the kernel is compiled with
IPFIREWALL_VERBOSE) and the number of packets logged so far for that particular rule does
not exceed thelogamount parameter. If no logamount is specified, the limit is taken from the
sysctl variablenet.inet.ip.fw.verbose_limit. In both cases, a value of 0 removes the logging limit.

Once the limit is reached, logging can be re-enabled by clearing the logging counter or the packet
counter for that entry, see theresetlog command.

Note: logging is done after all other packet matching conditions have been successfully verified,
and before performing the final action (accept, deny, etc.) on the packet.

RULE ACTIONS
A rule can be associated with one of the following actions, which will be executed when the packet matches
the body of the rule.

allow | accept | pass | permit
Allow packets that match rule. The search terminates.

check-state
Checks the packet against the dynamic ruleset. If a match is found, execute the action associated
with the rule which generated this dynamic rule, otherwise move to the next rule.
Check-state rules do not have a body. If no check-state rule is found, the dynamic rule-
set is checked at the firstkeep-state or limit rule.

count Update counters for all packets that match rule. The search continues with the next rule.

deny | drop
Discard packets that match this rule. The search terminates.

divert port
Divert packets that match this rule to thedivert (4) socket bound to portport. The search ter-
minates.

fwd | forward ipaddr[,port]
Change the next-hop on matching packets toipaddr, which can be an IP address in dotted quad
format or a host name. The search terminates if this rule matches.

If ipaddr is a local address, then matching packets will be forwarded toport (or the port num-
ber in the packet if one is not specified in the rule) on the local machine.
If ipaddr is not a local address, then the port number (if specified) is ignored, and the packet will
be forwarded to the remote address, using the route as found in the local routing table for that IP.
A fwd rule will not match layer-2 packets (those received on ether_input, ether_output, or
bridged).
The fwd action does not change the contents of the packet at all. In particular, the destination
address remains unmodified, so packets forwarded to another system will usually be rejected by

Darwin August13, 2002 5

IPFW (8) BSD System Manager’s Manual IPFW(8)

that system unless there is a matching rule on that system to capture them.For packets forwarded
locally, the local address of the socket will be set to the original destination address of the packet.
This makes thenetstat (1) entry look rather weird but is intended for use with transparent proxy
servers.

pipe pipe_nr
Pass packet to adummynet (4) “pipe” (for bandwidth limitation, delay, etc.). SeetheTRAFFIC
SHAPER (DUMMYNET) CONFIGURA TION Section for further information. The search ter-
minates; however, on exit from the pipe and if thesysctl (8) variablenet.inet.ip.fw.one_passis
not set, the packet is passed again to the firewall code starting from the next rule.

queue queue_nr
Pass packet to adummynet (4) “queue” (for bandwidth limitation using WF2Q+).

reject (Deprecated). Synonym for unreach host .

reset Discard packets that match this rule, and if the packet is a TCP packet, try to send a TCP reset
(RST) notice. The search terminates.

skipto number
Skip all subsequent rules numbered less thannumber. The search continues with the first rule
numberednumber or higher.

tee port
Send a copy of packets matching this rule to thedivert (4) socket bound to portport. The
search terminates and the original packet is accepted (but see SectionBUGS below).

unreach code
Discard packets that match this rule, and try to send an ICMP unreachable notice with codecode,
wherecode is a number from 0 to 255, or one of these aliases:net , host , protocol ,
port , needfrag , srcfail , net-unknown , host-unknown , isolated ,
net-prohib , host-prohib , tosnet , toshost , filter-prohib ,
host-precedence or precedence-cutoff . The search terminates.

RULE BODY
The body of a rule contains zero or more patterns (such as specific source and destination addresses or ports,
protocol options, incoming or outgoing interfaces, etc.) that the packet must match in order to be recognised.
In general, the patterns are connected by (implicit)and operators -- i.e. all must match in order for the rule
to match. Individual patterns can be prefixed by thenot operator to reverse the result of the match, as in

ipfw add 100 allow ip from not 1.2.3.4 to any

Additionally, sets of alternative match patterns (or-blocks) can be constructed by putting the patterns in lists
enclosed between parentheses () or braces { }, and using theor operator as follows:

ipfw add 100 allow ip from { x or not y or z } to any

Only one level of parentheses is allowed. Beware that most shells have special meanings for parentheses or
braces, so it is advisable to put a backslash \ in front of them to prevent such interpretations.

The body of a rule must in general include a source and destination address specifier. The keyword any can
be used in various places to specify that the content of a required field is irrelevant.

The rule body has the following format:

[proto from src to dst] [options]

The first part (proto from src to dst) is for backward compatibility withipfw1 . In ipfw2 any match pat-
tern (including MAC headers, IPv4 protocols, addresses and ports) can be specified in theoptions section.

Darwin August13, 2002 6

IPFW (8) BSD System Manager’s Manual IPFW(8)

Rule fields have the following meaning:

proto: protocol | { protocol or . . . }

protocol: [not] protocol-name | protocol-number
An IPv4 protocol specified by number or name (for a complete list see/etc/protocols). The
ip or all keywords mean any protocol will match.

The { protocol or . . . } format (anor-block) is provided for convenience only but its
use is deprecated.

src anddst: { addr | { addr or . . . } } [[not] ports]
An address (or a list, see below) optionally followed byports specifiers.

The second format (or-blockwith multiple addresses) is provided for convenience only and its use
is discouraged.

addr: [not] { any | me | addr-list | addr-set}

any matches any IP address.

me matches any IP address configured on an interface in the system. The address list is evaluated at
the time the packet is analysed.

addr-list: ip-addr[,addr-list]

ip-addr:
A host or subnet address specified in one of the following ways:

numeric-ip | hostname
Matches a single IPv4 address, specified as dotted-quad or a hostname.Hostnames are
resolved at the time the rule is added to the firewall list.

addr/masklen
Matches all addresses with baseaddr (specified as a dotted quad or a hostname) and
mask width ofmasklen bits. As an example, 1.2.3.4/25 will match all IP numbers
from 1.2.3.0 to 1.2.3.127 .

addr:mask
Matches all addresses with baseaddr (specified as a dotted quad or a hostname) and
the mask ofmask, specified as a dotted quad. As an example, 1.2.3.4/255.0.255.0 will
match 1.∗ .3.∗ . We suggest to use this form only for non-contiguous masks, and resort to
the addr/masklen format for contiguous masks, which is more compact and less
error-prone.

addr-set: addr[/masklen]{ list}

list: {num | num-num}[,list]
Matches all addresses with base addressaddr (specified as a dotted quad or a hostname) and
whose last byte is in the list between braces { } . Note that there must be no spaces between
braces and numbers (spaces after commas are allowed). Elementsof the list can be specified as
single entries or ranges.Themasklen field is used to limit the size of the set of addresses, and
can have any value between 24 and 32. If not specified, it will be assumed as 24.
This format is particularly useful to handle sparse address sets within a single rule. Because the
matching occurs using a bitmask, it takes constant time and dramatically reduces the complexity of
rulesets.
As an example, an address specified as 1.2.3.4/24{128,35-55,89} will match the following IP
addresses:
1.2.3.128, 1.2.3.35 to 1.2.3.55, 1.2.3.89 .

Darwin August13, 2002 7

IPFW (8) BSD System Manager’s Manual IPFW(8)

ports: {port | port-port}[,ports]
For protocols which support port numbers (such as TCP and UDP), optionalports may be speci-
fied as one or more ports or port ranges, separated by commas but no spaces, and an optionalnot
operator. The ‘- ’ notation specifies a range of ports (including boundaries).

Service names (from/etc/services) may be used instead of numeric port values. Thelength
of the port list is limited to 30 ports or ranges, though one can specify larger ranges by using an
or-block in theoptions section of the rule.

A backslash (‘ \ ’) can be used to escape the dash(‘ - ’) character in a service name (from a
shell, the backslash must be typed twice to avoid the shell itself interpreting it as an escape charac-
ter).

ipfw add count tcp from any ftp\\-data-ftp to any

Fragmented packets which have a non-zero offset (i.e. not the first fragment) will never match a
rule which has one or more port specifications. See thefrag option for details on matching frag-
mented packets.

RULE OPTIONS (MATCH P ATTERNS)
Additional match patterns can be used within rules. Zero or more of these so-calledoptionscan be present in
a rule, optionally prefixed by thenot operand, and possibly grouped intoor-blocks.

The following match patterns can be used (listed in alphabetical order):

// this is a comment.
Inserts the specified text as a comment in the rule.Everything following // is considered as a com-
ment and stored in the rule.You can have comment-only rules, which are listed as having a
count action followed by the comment.

bridged
Matches only bridged packets.

dst-ip ip-address
Matches IP packets whose destination IP is one of the address(es) specified as argument.

dst-port ports
Matches IP packets whose destination port is one of the port(s) specified as argument.

established
Matches TCP packets that have the RST or ACK bits set.

frag Matches packets that are fragments and not the first fragment of an IP datagram. Note that these
packets will not have the next protocol header (e.g. TCP, UDP) so options that look into these
headers cannot match.

gid group
Matches all TCP or UDP packets sent by or received for agroup. A group may be specified by
name or number.

icmptypes types
Matches ICMP packets whose ICMP type is in the listtypes. The list may be specified as any
combination of individual types (numeric) separated by commas.Ranges are not allowed.The
supported ICMP types are:

echo reply (0) , destination unreachable(3) , source quench(4) , redirect (5) , echo request
(8) , router advertisement (9) , router solicitation(10) , time-to-live exceeded (11) , IP header
bad (12) , timestamp request(13) , timestamp reply(14) , information request(15) , infor-
mation reply (16) , address mask request (17) and address mask reply (18) .

Darwin August13, 2002 8

IPFW (8) BSD System Manager’s Manual IPFW(8)

in | out
Matches incoming or outgoing packets, respectively. in andout are mutually exclusive (in fact,
out is implemented asnot in).

ipid id-list
Matches IP packets whoseip_id field has value included inid-list, which is either a single
value or a list of values or ranges specified in the same way asports.

iplen len-list
Matches IP packets whose total length, including header and data, is in the setlen-list, which
is either a single value or a list of values or ranges specified in the same way asports.

ipoptions spec
Matches packets whose IP header contains the comma separated list of options specified inspec.
The supported IP options are:

ssrr (strict source route),lsrr (loose source route),rr (record packet route) andts (time-
stamp). Theabsence of a particular option may be denoted with a ‘! ’.

ipprecedence precedence
Matches IP packets whose precedence field is equal toprecedence.

ipsec Matches packets that have IPSEC history associated with them (i.e. the packet comes encapsulated
in IPSEC, the kernel has IPSEC support and IPSEC_FILTERGIF option, and can correctly decap-
sulate it).

Note that specifyingipsec is different from specifyingproto ipsec as the latter will only
look at the specific IP protocol field, irrespective of IPSEC kernel support and the validity of the
IPSEC data.

iptos spec
Matches IP packets whosetos field contains the comma separated list of service types specified
in spec. The supported IP types of service are:

lowdelay (IPTOS_LOWDELAY) , throughput (IPTOS_THROUGHPUT) , reliability
(IPTOS_RELIABILITY) , mincost (IPTOS_MINCOST) , congestion (IPTOS_CE) .
The absence of a particular type may be denoted with a ‘! ’.

ipttl ttl-list
Matches IP packets whose time to live is included inttl-list, which is either a single value or
a list of values or ranges specified in the same way asports.

ipversion ver
Matches IP packets whose IP version field isver.

keep-state
Upon a match, the firewall will create a dynamic rule, whose default behaviour is to match bidirec-
tional traffic between source and destination IP/port using the same protocol.The rule has a lim-
ited lifetime (controlled by a set ofsysctl (8) variables), and the lifetime is refreshed every time
a matching packet is found.

layer2 Matches only layer2 packets, i.e. those passed toipfw from ether_demux() and ether_out-
put_frame().

limit { src-addr | src-port | dst-addr | dst-port } N
The firewall will only allow N connections with the same set of parameters as specified in the rule.
One or more of source and destination addresses and ports can be specified.

Darwin August13, 2002 9

IPFW (8) BSD System Manager’s Manual IPFW(8)

{ MAC | mac } dst-mac src-mac
Match packets with a given dst-mac andsrc-mac addresses, specified as theany keyword
(matching any MAC address), or six groups of hex digits separated by colons, and optionally fol-
lowed by a mask indicating how many bits are significant, as in

MAC 10:20:30:40:50:60/33 any

Note that the order of MAC addresses (destination first, source second) is the same as on the wire,
but the opposite of the one used for IP addresses.

mac-type mac-type
Matches packets whose Ethernet Type field corresponds to one of those specified as argument.
mac-type is specified in the same way asport numbers (i.e. one or more comma-separated
single values or ranges).You can use symbolic names for known values such asvlan, ipv4, ipv6.
Values can be entered as decimal or hexadecimal (if prefixed by 0x), and they are always printed as
hexadecimal (unless the-N option is used, in which case symbolic resolution will be attempted).

proto protocol
Matches packets with the corresponding IPv4 protocol.

recv | xmit | via {ifX | if∗ | ipno | any}
Matches packets received, transmitted or going through, respectively, the interface specified by
exact name (ifX), by device name (if∗), by IP address, or through some interface.

Thevia keyword causes the interface to always be checked. If recv or xmit is used instead of
via , then only the receive or transmit interface (respectively) is checked. Byspecifying both, it is
possible to match packets based on both receive and transmit interface, e.g.:

ipfw add deny ip from any to any out recv ed0 xmit ed1

The recv interface can be tested on either incoming or outgoing packets, while thexmit inter-
face can only be tested on outgoing packets. Soout is required (andin is invalid) whenever
xmit is used.

A packet may not have a receive or transmit interface: packets originating from the local host have
no receive interface, while packets destined for the local host have no transmit interface.

setup Matches TCP packets that have the SYN bit set but no ACK bit. This is the short form of
“ tcpflags syn,!ack ”.

src-ip ip-address
Matches IP packets whose source IP is one of the address(es) specified as argument.

src-port ports
Matches IP packets whose source port is one of the port(s) specified as argument.

tcpack ack
TCP packets only. Match if the TCP header acknowledgment number field is set toack.

tcpflags spec
TCP packets only. Match if the TCP header contains the comma separated list of flags specified in
spec. The supported TCP flags are:

fin , syn , rst , psh , ack andurg . The absence of a particular flag may be denoted with a ‘! ’.
A rule which contains atcpflags specification can never match a fragmented packet which has
a non-zero offset. Seethefrag option for details on matching fragmented packets.

tcpseq seq
TCP packets only. Match if the TCP header sequence number field is set toseq.

Darwin August13, 2002 10

IPFW (8) BSD System Manager’s Manual IPFW(8)

tcpwin win
TCP packets only. Match if the TCP header window field is set towin.

tcpoptions spec
TCP packets only. Match if the TCP header contains the comma separated list of options specified
in spec. The supported TCP options are:

mss (maximum segment size),window (tcp window advertisement),sack (selective ack), ts
(rfc1323 timestamp) andcc (rfc1644 t/tcp connection count). The absence of a particular option
may be denoted with a ‘! ’.

uid user
Match all TCP or UDP packets sent by or received for auser. A user may be matched by name
or identification number.

verrevpath
For incoming packets, a routing table lookup is done on the packet’s source address. If the inter-
face on which the packet entered the system matches the outgoing interface for the route, the
packet matches. If the interfaces do not match up, the packet does not match. All outgoing pack-
ets or packets with no incoming interface match.

The name and functionality of the option is intentionally similar to the Cisco IOS command:

ip verify unicast reverse-path

This option can be used to make anti-spoofing rules.

SETS OF RULES
Each rule belongs to one of 32 differentsets, numbered 0 to 31. Set 31 is reserved for the default rule.

By default, rules are put in set 0, unless you use theset N attribute when entering a new rule. Setscan be
individually and atomically enabled or disabled, so this mechanism permits an easy way to store multiple
configurations of the firewall and quickly (and atomically) switch between them.The command to
enable/disable sets is

ipfw set [disable number ...] [enable number ...]

where multipleenable or disable sections can be specified. Command execution is atomic on all the
sets specified in the command. By default, all sets are enabled.

When you disable a set, its rules behave as if they do not exist in the firewall configuration, with only one
exception:

dynamic rules created from a rule before it had been disabled will still be active until they expire. In
order to delete dynamic rules you have to explicitly delete the parent rule which generated them.

The set number of rules can be changed with the command

ipfw set move { rule rule-number | old-set} to new-set

Also, you can atomically swap two rulesets with the command

ipfw set swap first-set second-set

See theEXAMPLES Section on some possible uses of sets of rules.

STATEFUL FIREWALL
Stateful operation is a way for the firewall to dynamically create rules for specific flows when packets that
match a given pattern are detected. Support for stateful operation comes through thecheck-state ,
keep-state andlimit options ofrules.

Darwin August13, 2002 11

IPFW (8) BSD System Manager’s Manual IPFW(8)

Dynamic rules are created when a packet matches akeep-state or limit rule, causing the creation of a
dynamic rule which will match all and only packets with a given protocol between asrc-ip/src-port
dst-ip/dst-portpair of addresses (src anddst are used here only to denote the initial match addresses, but
they are completely equivalent afterwards). Dynamicrules will be checked at the firstcheck-state,
keep-state or limit occurrence, and the action performed upon a match will be the same as in the par-
ent rule.

Note that no additional attributes other than protocol and IP addresses and ports are checked on dynamic
rules.

The typical use of dynamic rules is to keep a closed firewall configuration, but let the first TCP SYN packet
from the inside network install a dynamic rule for the flow so that packets belonging to that session will be
allowed through the firewall:

ipfw add check-state
ipfw add allow tcp from my-subnet to any setup keep-state
ipfw add deny tcp from any to any

A similar approach can be used for UDP, where an UDP packet coming from the inside will install a
dynamic rule to let the response through the firewall:

ipfw add check-state
ipfw add allow udp from my-subnet to any keep-state
ipfw add deny udp from any to any

Dynamic rules expire after some time, which depends on the status of the flow and the setting of some
sysctl variables. SeeSectionSYSCTL VARIABLES for more details.For TCP sessions, dynamic rules
can be instructed to periodically send keepalive packets to refresh the state of the rule when it is about to
expire.

See SectionEXAMPLES for more examples on how to use dynamic rules.

TRAFFIC SHAPER (DUMMYNET) CONFIGURA TION
ipfw is also the user interface for thedummynet (4) traffic shaper.

dummynet operates by first using the firewall to classify packets and divide them intoflows, using any
match pattern that can be used inipfw rules. Dependingon local policies, a flow can contain packets for a
single TCP connection, or from/to a given host, or entire subnet, or a protocol type, etc.

Packets belonging to the same flow are then passed to either of two different objects, which implement the
traffic regulation:

pipe A pipe emulates a link with given bandwidth, propagation delay, queue size and packet loss
rate. Packets are queued in front of the pipe as they come out from the classifier, and then
transferred to the pipe according to the pipe’s parameters.

queue A queue is an abstraction used to implement the WF2Q+ (Worst-case Fair Weighted Fair
Queueing) policy, which is an efficient variant of the WFQ policy.
The queue associates aweightand a reference pipe to each flow, and then all backlogged (i.e.,
with packets queued) flows linked to the same pipe share the pipe’s bandwidth proportionally
to their weights. Note that weights are not priorities; a flow with a lower weight is still guar-
anteed to get its fraction of the bandwidth even if a flow with a higher weight is permanently
backlogged.

In practice,pipescan be used to set hard limits to the bandwidth that a flow can use, whereasqueuescan be
used to determine how different flow share the available bandwidth.

Darwin August13, 2002 12

IPFW (8) BSD System Manager’s Manual IPFW(8)

Thepipeandqueueconfiguration commands are the following:

pipe number config pipe-configuration

queue number config queue-configuration

The following parameters can be configured for a pipe:

bw bandwidth | device
Bandwidth, measured in [K|M]{ bit/s |Byte/s }.

A value of 0 (default) means unlimited bandwidth.The unit must immediately follow the number,
as in

ipfw pipe 1 config bw 300Kbit/s

If a device name is specified instead of a numeric value, as in

ipfw pipe 1 config bw tun0

then the transmit clock is supplied by the specified device. At the moment only thetun (4) device
supports this functionality, for use in conjunction withppp (8).

delay ms-delay
Propagation delay, measured in milliseconds. The value is rounded to the next multiple of the
clock tick (typically 10ms, but it is a good practice to run kernels with “options HZ=1000” to
reduce the granularity to 1ms or less). Default value is 0, meaning no delay.

The following parameters can be configured for a queue:

pipe pipe_nr
Connects a queue to the specified pipe. Multiple queues (with the same or different weights) can
be connected to the same pipe, which specifies the aggregate rate for the set of queues.

weight weight
Specifies the weight to be used for flows matching this queue. The weight must be in the range
1..100, and defaults to 1.

Finally, the following parameters can be configured for both pipes and queues:

buckets hash-table-size
Specifies the size of the hash table used for storing the various queues.Default value is 64 controlled
by thesysctl (8) variablenet.inet.ip.dummynet.hash_size, allowed range is 16 to 65536.

mask mask-specifier
Packets sent to a given pipe or queue by anipfw rule can be further classified into multiple flows,
each of which is then sent to a differentdynamicpipe or queue.A flow identifier is constructed by
masking the IP addresses, ports and protocol types as specified with themask options in the configu-
ration of the pipe or queue.For each different flow identifier, a new pipe or queue is created with the
same parameters as the original object, and matching packets are sent to it.

Thus, whendynamic pipesare used, each flow will get the same bandwidth as defined by the pipe,
whereas whendynamic queuesare used, each flow will share the parent’s pipe bandwidth evenly with
other flows generated by the same queue (note that other queues with different weights might be con-
nected to the same pipe).
Av ailable mask specifiers are a combination of one or more of the following:

dst-ip mask, src-ip mask, dst-port mask, src-port mask, proto mask or all ,

where the latter means all bits in all fields are significant.

Darwin August13, 2002 13

IPFW (8) BSD System Manager’s Manual IPFW(8)

noerror
When a packet is dropped by a dummynet queue or pipe, the error is normally reported to the caller
routine in the kernel, in the same way as it happens when a device queue fills up. Setting this option
reports the packet as successfully delivered, which can be needed for some experimental setups where
you want to simulate loss or congestion at a remote router.

plr packet-loss-rate
Packet loss rate.Argumentpacket-loss-rate is a floating-point number between 0 and 1, with
0 meaning no loss, 1 meaning 100% loss. The loss rate is internally represented on 31 bits.

queue {slots | sizeKbytes }
Queue size, inslots or KBytes . Default value is 50 slots, which is the typical queue size for Eth-
ernet devices. Notethat for slow speed links you should keep the queue size short or your traffic
might be affected by a significant queueing delay. E.g., 50 max-sized ethernet packets (1500 bytes)
mean 600Kbit or 20s of queue on a 30Kbit/s pipe.Even worse effect can result if you get packets
from an interface with a much larger MTU, e.g. the loopback interface with its 16KB packets.

red | gred w_q/min_th/max_th/max_p
Make use of the RED (Random Early Detection) queue management algorithm.w_q andmax_p are
floating point numbers between 0 and 1 (0 not included), whilemin_th andmax_th are integer
numbers specifying thresholds for queue management (thresholds are computed in bytes if the queue
has been defined in bytes, in slots otherwise).Thedummynet (4) also supports the gentle RED vari-
ant (gred). Threesysctl (8) variables can be used to control the RED behaviour:

net.inet.ip.dummynet.red_lookup_depth
specifies the accuracy in computing the average queue when the link is idle (defaults to
256, must be greater than zero)

net.inet.ip.dummynet.red_avg_pkt_size
specifies the expected average packet size (defaults to 512, must be greater than zero)

net.inet.ip.dummynet.red_max_pkt_size
specifies the expected maximum packet size, only used when queue thresholds are in bytes
(defaults to 1500, must be greater than zero).

CHECKLIST
Here are some important points to consider when designing your rules:

• Remember that you filter both packets goingin andout . Most connections need packets going in both
directions.

• Remember to test very carefully. It is a good idea to be near the console when doing this. If you cannot
be near the console, use an auto-recovery script such as the one in
/usr/share/examples/ipfw/change_rules.sh .

• Don’t forget the loopback interface.

FINE POINTS
• There are circumstances where fragmented datagrams are unconditionally dropped.TCP packets are

dropped if they do not contain at least 20 bytes of TCP header, UDP packets are dropped if they do not
contain a full 8 byte UDP header, and ICMP packets are dropped if they do not contain 4 bytes of ICMP
header, enough to specify the ICMP type, code, and checksum. These packets are simply logged as
“pullup failed” since there may not be enough good data in the packet to produce a meaningful log entry.

• Another type of packet is unconditionally dropped, a TCP packet with a fragment offset of one. This is a
valid packet, but it only has one use, to try to circumvent firewalls. Whenlogging is enabled, these pack-
ets are reported as being dropped by rule -1.

Darwin August13, 2002 14

IPFW (8) BSD System Manager’s Manual IPFW(8)

• If you are logged in over a network, loading thekld (4) version ofipfw is probably not as straightfor-
ward as you would think.I recommend the following command line:

kldload ipfw && \
ipfw add 32000 allow ip from any to any

Along the same lines, doing an

ipfw flush

in similar surroundings is also a bad idea.

• The ipfw filter list may not be modified if the system security level is set to 3 or higher (seeinit (8) for
information on system security levels).

PA CKET DIVERSION
A divert (4) socket bound to the specified port will receive all packets diverted to that port. If no socket is
bound to the destination port, or if the kernel wasn’t compiled with divert socket support, the packets are
dropped.

SYSCTL VARIABLES
A set of sysctl (8) variables controls the behaviour of the firewall and associated modules (dummynet,
bridge). Theseare shown below together with their default value (but always check with thesysctl (8)
command what value is actually in use) and meaning:

net.inet.ip.dummynet.expire: 1
Lazily delete dynamic pipes/queue once they hav eno pending traffic. You can disable this by set-
ting the variable to 0, in which case the pipes/queues will only be deleted when the threshold is
reached.

net.inet.ip.dummynet.hash_size: 64
Default size of the hash table used for dynamic pipes/queues.This value is used when no
buckets option is specified when configuring a pipe/queue.

net.inet.ip.dummynet.max_chain_len: 16
Target value for the maximum number of pipes/queues in a hash bucket. The product
max_chain_len ∗ hash_size is used to determine the threshold over which empty
pipes/queues will be expired even whennet.inet.ip.dummynet.expire=0 .

net.inet.ip.dummynet.red_lookup_depth: 256

net.inet.ip.dummynet.red_avg_pkt_size: 512

net.inet.ip.dummynet.red_max_pkt_size: 1500
Parameters used in the computations of the drop probability for the RED algorithm.

net.inet.ip.fw.autoinc_step: 100
Delta between rule numbers when auto-generating them. The value must be in the range 1..1000.
This variable is only present inipfw2 , the delta is hardwired to 100 inipfw1 .

net.inet.ip.fw.curr_dyn_buckets: net.inet.ip.fw.dyn_buckets
The current number of buckets in the hash table for dynamic rules (readonly).

net.inet.ip.fw.debug: 1
Controls debugging messages produced byipfw .

net.inet.ip.fw.dyn_buckets: 256
The number of buckets in the hash table for dynamic rules.Must be a power of 2, up to 65536.It
only takes effect when all dynamic rules have expired, so you are advised to use aflush com-

Darwin August13, 2002 15

IPFW (8) BSD System Manager’s Manual IPFW(8)

mand to make sure that the hash table is resized.

net.inet.ip.fw.dyn_count: 3
Current number of dynamic rules (read-only).

net.inet.ip.fw.dyn_keepalive: 1
Enables generation of keepalive packets forkeep-state rules on TCP sessions. A keepalive is
generated to both sides of the connection every 5 seconds for the last 20 seconds of the lifetime of
the rule.

net.inet.ip.fw.dyn_max: 8192
Maximum number of dynamic rules. When you hit this limit, no more dynamic rules can be
installed until old ones expire.

net.inet.ip.fw.dyn_ack_lifetime: 300

net.inet.ip.fw.dyn_syn_lifetime: 20

net.inet.ip.fw.dyn_fin_lifetime: 1

net.inet.ip.fw.dyn_rst_lifetime: 1

net.inet.ip.fw.dyn_udp_lifetime: 5

net.inet.ip.fw.dyn_short_lifetime: 30
These variables control the lifetime, in seconds, of dynamic rules. Upon the initial SYN exchange
the lifetime is kept short, then increased after both SYN have been seen, then decreased again dur-
ing the final FIN exchange or when a RST is received. Bothdyn_fin_lifetimeanddyn_rst_lifetime
must be strictly lower than 5 seconds, the period of repetition of keepalives. The firewall enforces
that.

net.inet.ip.fw.enable: 1
Enables the firewall. Settingthis variable to 0 lets you run your machine without firewall even if
compiled in.

net.inet.ip.fw.one_pass: 1
When set, the packet exiting from thedummynet (4) pipe is not passed though the firewall again.
Otherwise, after a pipe action, the packet is reinjected into the firewall at the next rule.

net.inet.ip.fw.verbose: 1
Enables verbose messages.

net.inet.ip.fw.verbose_limit: 0
Limits the number of messages produced by a verbose firewall.

net.link.ether.ipfw: 0
Controls whether layer-2 packets are passed toipfw . Default is no.

net.link.ether.bridge_ipfw: 0
Controls whether bridged packets are passed toipfw . Default is no.

USING IPFW2 IN Fr eeBSD-STABLE
ipfw2 is standard inFreeBSDCURRENT, whereasFreeBSDSTABLE still usesipfw1 unless the kernel is
compiled withoptions IPFW2 , and /sbin/ipfw and /usr/lib/libalias are recompiled with
-DIPFW2 and reinstalled (the same effect can be achieved by adding IPFW2=TRUEto /etc/make.conf
before a buildworld).

Darwin August13, 2002 16

IPFW (8) BSD System Manager’s Manual IPFW(8)

IPFW2 ENHANCEMENTS
This Section lists the features that have been introduced inipfw2 which were not present inipfw1 . We
list them in order of the potential impact that they can have in writing your rulesets.You might want to con-
sider using these features in order to write your rulesets in a more efficient way.

Syntax and flags
ipfw1 does not support the -n flag (only test syntax), nor it allows spaces after commas or sup-
ports all rule fields in a single argument.

Handling of non-IPv4 packets
ipfw1 will silently accept all non-IPv4 packets (whichipfw1 will only see when
net.link.ether.bridge_ipfw=1). ipfw2 will filter all packets (including non-IPv4 ones) according
to the ruleset.To achieve the same behaviour asipfw1 you can use the following as the very first
rule in your ruleset:

ipfw add 1 allow layer2 not mac-type ip

The layer2 option might seem redundant, but it is necessary -- packets passed to the firewall
from layer3 will not have a MAC header, so themac-type ip pattern will always fail on them,
and thenot operator will make this rule into a pass-all.

Addresses
ipfw1 does not supports address sets or lists of addresses.

Port specifications
ipfw1 only allows one port range when specifying TCP and UDP ports, and is limited to 10
entries instead of the 15 allowed byipfw2 . Also, in ipfw1 you can only specify ports when the
rule is requestingtcp or udp packets. With ipfw2 you can put port specifications in rules
matching all packets, and the match will be attempted only on those packets carrying protocols
which include port identifiers.

Finally, ipfw1 allowed the first port entry to be specified asport:mask wheremask can be an
arbitrary 16-bit mask. This syntax is of questionable usefulness and it is not supported anymore in
ipfw2 .

Or-blocks
ipfw1 does not support Or-blocks.

keepalives
ipfw1 does not generate keepalives for stateful sessions.As a consequence, it might cause idle
sessions to drop because the lifetime of the dynamic rules expires.

Sets of rules
ipfw1 does not implement sets of rules.

MAC header filtering and Layer-2 firewalling.
ipfw1 does not implement filtering on MAC header fields, nor is it invoked on packets from
ether_demux() andether_output_frame(). The sysctl variablenet.link.ether.ipfwhas
no effect there.

Options Inipfw1 , the following options only accept a single value as an argument:

ipid, iplen, ipttl

The following options are not implemented byipfw1 :

dst-ip, dst-port, layer2, mac, mac-type, src-ip, src-port.

Darwin August13, 2002 17

IPFW (8) BSD System Manager’s Manual IPFW(8)

Additionally, the RELENG_4 version ofipfw1 does not implement the following options:

ipid, iplen, ipprecedence, iptos, ipttl, ipversion, tcpack,
tcpseq, tcpwin .

Dummynet options
The following option fordummynet pipes/queues is not supported:noerror .

EXAMPLES
There are far too many possible uses ofipfw so this Section will only give a small set of examples.

BASIC PACKET FIL TERING
This command adds an entry which denies all tcp packets fromcracker.evil.org to the telnet port of
wolf.tambov.sufrom being forwarded by the host:

ipfw add deny tcp from cracker.evil.org to wolf.tambov.su telnet

This one disallows any connection from the entire cracker’s network to my host:

ipfw add deny ip from 123.45.67.0/24 to my.host.org

A first and efficient way to limit access (not using dynamic rules) is the use of the following rules:

ipfw add allow tcp from any to any established
ipfw add allow tcp from net1 portlist1 to net2 portlist2 setup
ipfw add allow tcp from net3 portlist3 to net3 portlist3 setup
. . .
ipfw add deny tcp from any to any

The first rule will be a quick match for normal TCP packets, but it will not match the initial SYN packet,
which will be matched by thesetup rules only for selected source/destination pairs. All other SYN packets
will be rejected by the finaldeny rule.

If you administer one or more subnets, you can take advantage of theipfw2 syntax to specify address sets
and or-blocks and write extremely compact rulesets which selectively enable services to blocks of clients, as
below:

goodguys="{ 10.1.2.0/24{20,35,66,18} or 10.2.3.0/28{6,3,11} }"
badguys="10.1.2.0/24{8,38,60}"

ipfw add allow ip from ${goodguys} to any
ipfw add deny ip from ${badguys} to any
... normal policies ...

The ipfw1 syntax would require a separate rule for each IP in the above example.

Theverrevpath option could be used to do automated anti-spoofing by adding the following to the top of
a ruleset:

ipfw add deny ip from any to any not verrevpath in

This rule drops all incoming packets that appear to be coming to the sytem on the wrong interface. For exam-
ple, a packet with a source address belonging to a host on a protected internal network would be dropped if it
tried to enter the system from an external interface.

DYNAMIC R ULES
In order to protect a site from flood attacks involving fake TCP packets, it is safer to use dynamic rules:

Darwin August13, 2002 18

IPFW (8) BSD System Manager’s Manual IPFW(8)

ipfw add check-state
ipfw add deny tcp from any to any established
ipfw add allow tcp from my-net to any setup keep-state

This will let the firewall install dynamic rules only for those connection which start with a regular SYN
packet coming from the inside of our network. Dynamicrules are checked when encountering the first
check-state or keep-state rule. A check-state rule should usually be placed near the beginning
of the ruleset to minimize the amount of work scanning the ruleset.Your mileage may vary.

To limit the number of connections a user can open you can use the following type of rules:

ipfw add allow tcp from my-net/24 to any setup limit src-addr 10
ipfw add allow tcp from any to me setup limit src-addr 4

The former (assuming it runs on a gateway) will allow each host on a /24 network to open at most 10 TCP
connections. Thelatter can be placed on a server to make sure that a single client does not use more than 4
simultaneous connections.

BEWARE: stateful rules can be subject to denial-of-service attacks by a SYN-flood which opens a huge num-
ber of dynamic rules. The effects of such attacks can be partially limited by acting on a set ofsysctl (8)
variables which control the operation of the firewall.

Here is a good usage of thelist command to see accounting records and timestamp information:

ipfw -at list

or in short form without timestamps:

ipfw -a list

which is equivalent to:

ipfw show

Next rule diverts all incoming packets from 192.168.2.0/24 to divert port 5000:

ipfw divert 5000 ip from 192.168.2.0/24 to any in

TRAFFIC SHAPING
The following rules show some of the applications ofipfw anddummynet (4) for simulations and the like.

This rule drops random incoming packets with a probability of 5%:

ipfw add prob 0.05 deny ip from any to any in

A similar effect can be achieved making use of dummynet pipes:

ipfw add pipe 10 ip from any to any
ipfw pipe 10 config plr 0.05

We can use pipes to artificially limit bandwidth, e.g. on a machine acting as a router, if we want to limit traf-
fic from local clients on 192.168.2.0/24 we do:

ipfw add pipe 1 ip from 192.168.2.0/24 to any out
ipfw pipe 1 config bw 300Kbit/s queue 50KBytes

note that we use theout modifier so that the rule is not used twice. Remember in fact thatipfw rules are
checked both on incoming and outgoing packets.

Should we want to simulate a bidirectional link with bandwidth limitations, the correct way is the following:

ipfw add pipe 1 ip from any to any out
ipfw add pipe 2 ip from any to any in

Darwin August13, 2002 19

IPFW (8) BSD System Manager’s Manual IPFW(8)

ipfw pipe 1 config bw 64Kbit/s queue 10Kbytes
ipfw pipe 2 config bw 64Kbit/s queue 10Kbytes

The above can be very useful, e.g. if you want to see how your fancy Web page will look for a residential
user who is connected only through a slow link. You should not use only one pipe for both directions, unless
you want to simulate a half-duplex medium (e.g. AppleTalk, Ethernet, IRDA). It is not necessary that both
pipes have the same configuration, so we can also simulate asymmetric links.

Should we want to verify network performance with the RED queue management algorithm:

ipfw add pipe 1 ip from any to any
ipfw pipe 1 config bw 500Kbit/s queue 100 red 0.002/30/80/0.1

Another typical application of the traffic shaper is to introduce some delay in the communication. This can
significantly affect applications which do a lot of Remote Procedure Calls, and where the round-trip-time of
the connection often becomes a limiting factor much more than bandwidth:

ipfw add pipe 1 ip from any to any out
ipfw add pipe 2 ip from any to any in
ipfw pipe 1 config delay 250ms bw 1Mbit/s
ipfw pipe 2 config delay 250ms bw 1Mbit/s

Per-flow queueing can be useful for a variety of purposes.A very simple one is counting traffic:

ipfw add pipe 1 tcp from any to any
ipfw add pipe 1 udp from any to any
ipfw add pipe 1 ip from any to any
ipfw pipe 1 config mask all

The above set of rules will create queues (and collect statistics) for all traffic. Becausethe pipes have no lim-
itations, the only effect is collecting statistics.Note that we need 3 rules, not just the last one, because when
ipfw tries to match IP packets it will not consider ports, so we would not see connections on separate ports
as different ones.

A more sophisticated example is limiting the outbound traffic on a net with per-host limits, rather than per-
network limits:

ipfw add pipe 1 ip from 192.168.2.0/24 to any out
ipfw add pipe 2 ip from any to 192.168.2.0/24 in
ipfw pipe 1 config mask src-ip 0x000000ff bw 200Kbit/s queue
20Kbytes
ipfw pipe 2 config mask dst-ip 0x000000ff bw 200Kbit/s queue
20Kbytes

SETS OF RULES
To add a set of rules atomically, e.g. set 18:

ipfw set disable 18
ipfw add NN set 18 ... # r epeat as needed
ipfw set enable 18

To delete a set of rules atomically the command is simply:

ipfw delete set 18

To test a ruleset and disable it and regain control if something goes wrong:

ipfw set disable 18
ipfw add NN set 18 ... # r epeat as needed

Darwin August13, 2002 20

IPFW (8) BSD System Manager’s Manual IPFW(8)

ipfw set enable 18; echo done; sleep 30 && ipfw set disable 18

Here if everything goes well, you press control-C before the "sleep" terminates, and your ruleset will be left
active. Otherwise, e.g. if you cannot access your box, the ruleset will be disabled after the sleep terminates
thus restoring the previous situation.

SEE ALSO
cpp (1), m4(1), bridge (4), divert (4), dummynet (4), ip (4), ipfirewall (4), protocols (5),
services (5), init (8), kldload (8), reboot (8), sysctl (8), syslogd (8)

BUGS
The syntax has grown over the years and sometimes it might be confusing.Unfortunately, backward com-
patibility prevents cleaning up mistakes made in the definition of the syntax.

!!! WARNING !!!

Misconfiguring the firewall can put your computer in an unusable state, possibly shutting down network ser-
vices and requiring console access to regain control of it.

Incoming packet fragments diverted bydivert or tee are reassembled before delivery to the socket. The
action used on those packet is the one from the rule which matches the first fragment of the packet.

Packets that match atee rule should not be immediately accepted, but should continue going through the
rule list. This may be fixed in a later version.

Packets diverted to userland, and then reinserted by a userland process may lose various packet attributes.
The packet source interface name will be preserved if it is shorter than 8 bytes and the userland process saves
and reuses the sockaddr_in (as doesnatd (8)); otherwise, it may be lost. If a packet is reinserted in this
manner, later rules may be incorrectly applied, making the order ofdivert rules in the rule sequence very
important.

AUTHORS
Ugen J. S. Antsilevich,
Poul-Henning Kamp,
Alex Nash,
Archie Cobbs,
Luigi Rizzo.

API based upon code written by Daniel Boulet for BSDI.

Work ondummynet (4) traffic shaper supported by Akamba Corp.

HISTORY
The ipfw utility first appeared inFreeBSD2.0. dummynet (4) was introduced inFreeBSD2.2.8. Stateful
extensions were introduced inFreeBSD4.0. ipfw2 was introduced in Summer 2002.

Darwin August13, 2002 21

